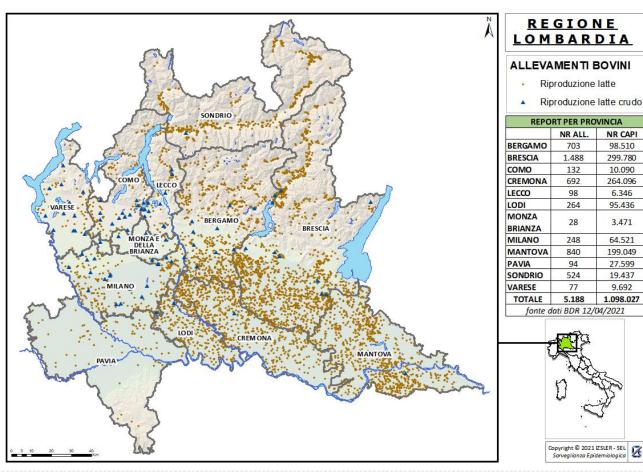


Ricerca dei residui di principi attivi nel latte bovino di massa della Provincia di Brescia


Brescia, 14 aprile 2021

Silvia Bellini: Sorveglianza Epidemiologica Giorgio Fedrizzi: Chimico degli Alimenti

Obiettivi

- Monitorare i livelli rilevabili di antimicrobici nel latte
- Valutare gli effettivi rischi per la salute dei consumatori
- Intraprendere azioni correttive

Area di Studio: Brescia

Fasi dello studio

- 1. Valutazione della presenza di residui di antibiotici nei campioni di latte:
 - Impianti: 12
 - Campioni: 52
 - Aziende di bovine latte: 150
- 2. Valutazione della corrispondenza tra le molecole rilevate e quelle utilizzate in allevamento

Metodologia

- ➤ I SV ATS BS con la Direzione IZSLER hanno pianificato lo studio, effettuato la raccolta dei campioni, verificato il consumo di farmaci in azienda e valutato i risultati
- ➤ Il Reparto di Chimica degli Alimenti e dei Mangimi IZSLER ha effettuato l'analisi mediante metodica LC-HRMS che consente la determinazione di 61 molecole sui conferimenti di latte
 - ✓ Queste molecole possono essere raggruppate in 6 grandi raggruppamenti di antibiotici: amfenicoli, beta-lattamici, chinolonici, macrolidi, sulfamidici e tetracicline
- La Sorveglianza Epidemiologica IZSLER ha eseguito le analisi dei risultati ottenuti

Metodologia

L'ATS di Brescia ha estratto l'elenco degli antibiotici prescritti nei mesi prima del prelievo per ciascun allevamento coinvolto nello studio e sono stati inseriti due indicatori: PCU in mg e DDD, misurano il consumo dei farmaci in azienda.

- PCU (Population Corrected Unit) misura le vendite complessive di antimicrobici veterinari (mg di principio attivo per kg di peso stimato nel trattamento di allevamenti e animali da macello)
- DDD (Defined Daily Dose) considera le dosi somministrate

Campioni

- Sono stati prelevati 52 campioni di latte da cisterne che conferivano latte a 12 impianti
- In totale è stato esaminato il latte di 150 allevamenti

Impianto	N. allevamenti		
Impianto 1	9		
Impianto 2	31		
Impianto 3	30		
Impianto 4	12		
Impianto 5	6		
Impianto 6	9		
Impianto 7	8		
Impianto 8	13		
Impianto 9	12		
Impianto 10	5		
Impianto 11	11		
Impianto 12	4		
Totale	150		

Analisi statistica

L'elenco dei campioni di latte accettati presso il laboratorio IZSLER è stato utilizzato per conteggiare il numero di campioni e gli esiti per periodo di prelievo.

L'elenco dei farmaci prescritti a ciascun allevamento è stato utilizzato per calcolare il numero di prescrizioni, la media e la deviazione standard (SD) di DDD:

- per impianto
- per allevamento
- per raggruppamenti di antibiotici

Le analisi statistiche sono state effettuate utilizzando il software statistico R versione 3.6.1.

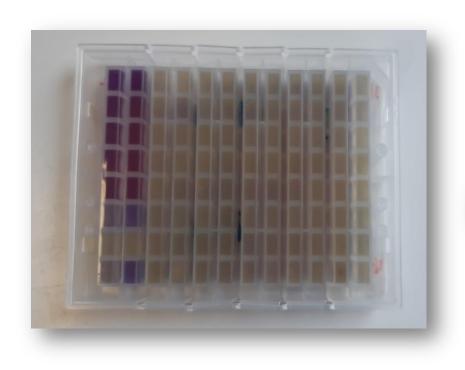
Risultati: Valutazione della presenza di residui di antibiotici

Gli allevamenti coinvolti sono 150 e afferiscono a 12 impianti I campioni di latte prelevati dagli impianti nei due periodi (52) sono risultati tutti negativi

Impianto	Settembre 2020	Dicembre 2020	Totale	Esiti Irregolari/Positivi
Impianto 1	2	2	4	0
Impianto 2	5	6	11	0
Impianto 3	5	5	10	0
Impianto 4	2	2	4	0
Impianto 5	1	1	2	0
Impianto 6	1	1	2	0
Impianto 7	1	1	2	0
Impianto 8	2	2	4	0
Impianto 9	2	1	3	0
Impianto 10	0	2	2	0
Impianto 11	2	2	4	0
Impianto 12	2	2	4	0
Totale	25	27	<mark>52</mark>	0

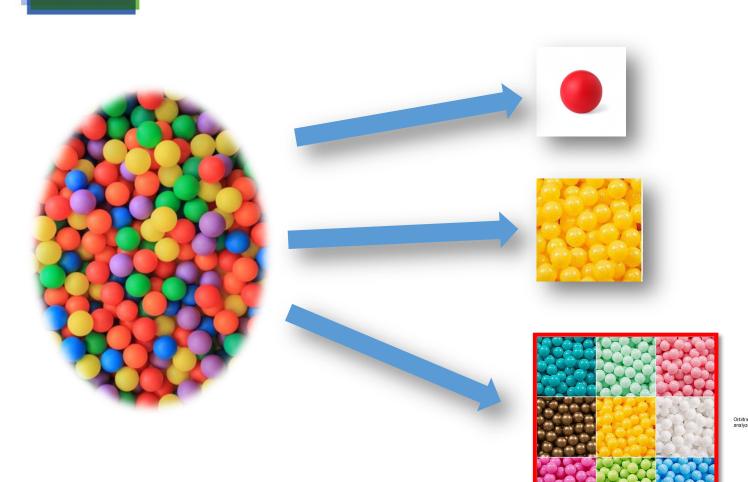
Risultati: Valutazione della corrispondenza tra le molecole rilevate e quelle utilizzate in allevamento

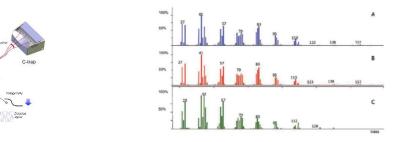
Statistiche descrittive del DDD degli antibiotici prescritti per raggruppamento di antibiotici


Gruppo di antibiotici	N. prescrizioni	Media di DDD	SD di DDD
AMFENICOLI	91	0,17	0,56
BETA-LATTAMICI	353	0,71	2,20
CHINOLONICI	63	0,23	0,29
MACROLIDI	75	0,31	0,33
SULFAMIDICI	125	0,20	0,35
TETRACICLINE	23	0,06	0,16

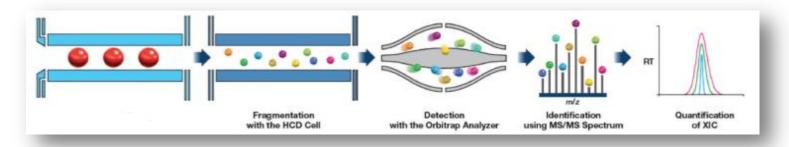
Metodo multiclasse in LC-HRMS nuovo approccio analitico per la ricerca di residui di antibiotici nel latte

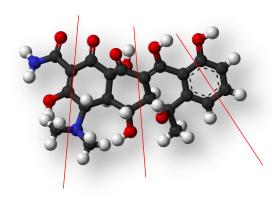
Evoluzione tecnologica




PUNTI DI FORZA
PUNTI DI DEBOLEZZA

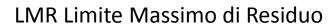
Metodo multiclasse



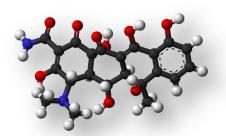

HRMS - spettrometria di massa ad alta risoluzione

Principio della spettrometria di massa ad alta risoluzione





SENSIBILITA' ANALITICA

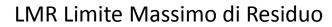


LOQ - Limite di Quantificazione 2 -10 μg/kg

Importanza del LOQ per il progetto

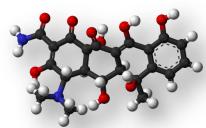
SENSIBILITA' ANALITICA

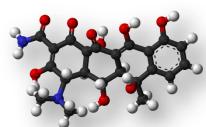
LMR Limite Massimo di Residuo


LOQ Limite di Quantificazione $2-10 \mu g/kg$

SENSIBILITA' ANALITICA

LOQ Limite di Quantificazione 2 -10


 $2 - 10 \mu g/kg$


CLASSI E ANTIBIOTICI DETERMINATI

- Beta-lattamici (16) Amoxicillina Ampicillina Cefalexina Cefalonio Cefazolina Cefoperazone Cefquinome Cefapirina Ceftiofur Cloxacillina Desacetilcefapirina Dicloxacillina Nafcillina Oxacillina Penicillina G Penicillina V
- Amfenicoli (3) Florfenicolo Florfenicolammina Tiamfenicolo
- Chinolonici (11) Acido Nalidixico Acido Oxolinico Ciprofloxacin Danofloxacin Difloxacin Enrofloxacina Flumequina Levofloxacin Marbofloxacin Norfloxacin Sarafloxacin
- Macrolidi (10) 3-O-acetiltilosina Eritromicina A Gamitromicina Neospiramicina I Spiramicina I Tildipirosina Tilmicosina Tulatromicina Tilosina A Tilvalosina
- Pleuromutiline (2) Tiamulina Valnemulina
- Sulfamidici (10) Sulfaclorpiridazina Sulfadiazina Sulfadimetossina Sulfamerazina Sulfametazina Sulfametossazolo Sulfamonometossina Sulfapiridina Sulfachinossalina Sulfatiazolo
- Tetracicline (7) 4-epiclortetraciclina 4-epiossitetraciclina 4-epitetraciclina Clortetraciclina Doxiciclina Ossitetraciclina Tetraciclina
- Rifaximina

Lincomicina

LOQ $2-10 \mu g/kg$

Trimetoprim